Dark sectors in η, η' decays

Sean Tulin

LOI with Corrado Gatto and Bastian Kubis
Other collaborators welcome

New η and η ' factories on the horizon

Upcoming experiments

Jefferson Eta Factory (JEF) at Jefferson Lab — Hall D (approved)

	η	η'	
Tagged mesons	6.5×10^7	$4.9x10^7$	per 100 days

Rare Eta Decays with a TPC for Optical Photons (REDTOP) possibly at Fermilab (proposed)

Phase I (untagged mode) $2x10^{13}$ 10^{11} per year Phase II+ (tagged mode) $1x10^{13}$ 10^{11}

Previous Experiments:

Experiment	Total η	Total η'	
CB at AGS	10 ⁷	-	
CB MAMI-B	2x10 ⁷	-	
CB MAMI-C	6x10 ⁷	10 ⁶	
WASA-COSY	~3x10 ⁷ (p+d), ~5x10 ⁸ (p+p)	-	
KLOE-II	3x10 ⁸	5x10 ⁵	
BESIII	~10 ⁷	~5x10 ⁷	

Jefferson Eta Factory (JEF) experiment γ beam (10 GeV) on H target

GlueX + upgraded forward calorimeter at Jefferson Lab (Hall D)

Rare Eta Decays with a TPC for Optical Photons (REDTOP)

proton beam (1-3 GeV) on nuclear target (Be/D)

See talks by Liping Gan and Anna Mazzacane (RF2 session)

Rich physics program at η, η' factories

Standard Model highlights

- Theory input for light-by-light scattering for $(g-2)_{\mu}$
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

Channel	Expt. branching ratio	Discussion	
$\eta \to 2\gamma$	39.41(20)%	chiral anomaly, η – η' mixing	
$\eta \to 3\pi^0$	32.68(23)%	$m_u - m_d$	
$\eta \to \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic B boson, light Higgs scalars	
$\eta \to \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)	
$\eta \to 4\gamma$	$< 2.8 \times 10^{-4}$	$< 10^{-11}[52]$	
$\eta \to \pi^+\pi^-\pi^0$	22.92(28)%	$m_u - m_d$, C/CP violation, light Higgs scalars	
$\eta o \pi^+\pi^-\gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g-2)_{\mu}$, P/CP violation	
$\eta o \pi^+\pi^-\gamma\gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs	
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g-2)_{\mu}$, dark photon, protophobic X boson	
$\eta \to \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_{\mu}$, dark photon	
$\eta \rightarrow e^+e^-$	$< 7 \times 10^{-7}$	theory input for $(g-2)_{\mu}$, BSM weak decays	
$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g-2)_{\mu}$, BSM weak decays, P/CP violation	
$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	
$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, P/CP violation, ALPs	
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, P/CP violation, ALPs	
$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$	
$\eta \to e^+ e^- \mu^+ \mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	
$\eta \to \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	
$\eta \to \pi^+\pi^-\pi^0\gamma$	$< 5 \times 10^{-4}$	direct emission only	
$\eta \to \pi^{\pm} e^{\mp} \nu_e$	$< 1.7 \times 10^{-4}$	second-class current	
$\eta \to \pi^+\pi^-$	$< 4.4 \times 10^{-6} [53]$	P/CP violation	
$\eta \to 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation Gan, Kubis, Passemar, ST	
$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	<i>P/CP</i> violation [arxiv:2007.00664]	

η , η ' laboratory for dark sectors

- On-shell decays to new light particles in the MeV—GeV range
 - Vector bosons (hidden photons), scalar bosons, axion-like particles (ALPs)
- Leading decays of η are already suppressed $\sim \mathcal{O}\left(\alpha_{\rm em}^2\right)$ or $\mathcal{O}\left((m_u-m_d)^2\right)$
- Larger mass reach for η' but worse sensitivity (total width larger by ~ 100)
- Decays to light hidden particles are 2- or 3-body decays that mimic 3-, 4-, or 5-body final states (often very rare)
- Search strategies (visible final states):
 - Resonance searches (bump hunting)
 - Displaced vertices (long-lived decays)
 - Rare decays new physics process mimics highly-suppressed SM channels
- Other possibilities: invisible or partially-invisible decays

Goals for Snowmass process

- Dark sector predictions and experimental sensitivities for η , η' decays
 - Including more general frameworks beyond those considered in literature
 - Since NLO corrections can be important, go beyond leading order in χPT
 - Connection with landscape of constraints and anomalies [(g-2)_u, ⁸Be, etc.]
- Collaboration between dark sector phenomenology, χ PT theory, and experiment

Models Theory landscape Predictions Sensitivities

Models Theory landscape **Vector bosons**

Predictions

Sensitivities

Protophobic X(17) boson

Models

Theory landscape

Predictions

Sensitivities

Vector bosons

Scalar bosons

u-quark scalar coupling only

General signatures

$$\eta, \eta' \to \pi^0 S \to \pi^0 \ell^+ \ell^-, \quad \eta' \to \eta S \to \eta \ell^+ \ell^-$$

$$\eta \to \pi^0 S \to \pi^0 \gamma \gamma$$

$$\eta, \eta' \to \pi^0 S \to 3\pi, \quad \eta' \to \eta S \to \eta \pi \pi$$

Models Theory landscape Vector bosons

Predictions

Sensitivities

Scalar bosons

Go beyond simplified u-quark coupled model Study scalar form factors (esp. for η')

Axion-like particles η , η' constraints for simplified models only

Models

Theory landscape

Predictions

Sensitivities

Vector bosons

Go beyond simplified u-quark coupled model Study scalar form factors (esp. for η')

Axion-like particles Go beyond simplified models and LO predictions

$$\eta \to \pi\pi a \to \pi\pi\gamma\gamma$$
 , $\pi\pi e^+e^-$, $\pi\pi\mu^+\mu^-$ (and same for η ')

$$\eta' \to \pi \pi a \to \pi \pi \pi^+ \pi^- \gamma$$
, 5π

$$\eta' \to \eta \pi^0 a \to \eta \pi^0 \gamma \gamma$$
, $\eta \pi^0 e^+ e^-$, $\eta \pi^0 \mu^+ \mu^-$

Summary

What is the motivation?

- η,η' decays offer complementary probes of dark sectors
- Synergy with Standard Model η, η' decay studies

What joint efforts are needed?

- Collaboration between theorists to explore model landscape and predictions
- Collaboration with experimentalists to study sensitivities

What is the schedule?

To be determined

If you are interested to join this effort, let me know!